Batteries / Power Systems: January 2010 Archives

DealExtreme is one of my favorite online stores. It's a distributor of inexpensive electronic gadgets based in China. I'm always finding something new there. The latest treasure is this little-but-very-bright bare LED: 10WattLEDsku_5876_1.jpg

DealExtreme lists it as a 10 watt LED (SKU 5876). Unbelievably it's just under $12 with shipping included!

Looking at the die shows that it is 9 discrete high-powered white LEDs in a single package. DealExtreme is bad about specs, but the comments in the DX forum seem to suggest that 700 mA at 12 volts is a reasonable spec for this LED. This would yield 8.4 watts.

(I'm wondering though if it isn't 3 x 350 mA @ 3.5 serial LEDs in a 3 parallel strings, which would be 1050 mA @ 10.5 volts. But for now, I'll run it at 700 mA).

DealExtreme lists it as 500-600 lumens @ 6500K color temperature.

As with most LEDs, you need a good current regulated driver circuit since you can't just run these things off a resistor. I decided that the easiest and simplest driver would be one based off the amazingly versatile LM317 chip.

As before, these sites have good javascript based circuit diagrams for calculating LED driver circuitry:

Plugging my values (700 mA) into them yielded the need for a 1.8 ohm resistor with my LM317. Here's the schematic that I designed around those figures (courtesy of ExpressPCH):

Schematic

Bodged together and plugged into a li-ion pack from my model helicopter and voila, an amazing amount of light. I'm thinking of using it on the headlight of my Piaggio (which currently uses a 3-watt LED) or to replace the bulb on my old 15-watt Niterider headlight, which has seen happier days.

10WattLEDsku_5876_1.jpg

(More photos and photometric testing after the jump)

The weather was finally nice enough to commute to work this week on my Piaggio Boxer EV with Prius NiMH batteries.

Here's the data from my CycleAnalyst:

Run #1
1.18
(To)
Run #2
1.18
(From)
Run #3
1.19
(To)
Run #5
1.20
(To)
Distance5.2 km4.85 km4.21 km4.19 km
Efficiency45.1 Wh/km39.2 Wh/km42.2 Wh/km47.6 Wh/km
Energy used234.23 Wh189.87 Wh176.92 Wh199.03 Wh
Charge Used5.90 Ah4.28 Ah4.01 Ah5.01 Ah
Max Amps106 A101 A91 A101 A
Average Speed20.6 km/h23.3 km/h24.8 km/h24.1 km/h
Max Speed36.6 km/h40.3 km/h39.0 km/h36.6 km/h
Starting voltage---49.950.247.2
Ending voltage43.8v45.9v---44.2v
Run time15 min12:3010:1010:24

My commute is slightly uphill on the way to work and downhill on the way back, which accounts for the difference in energy efficiency going to and from work.

The bike feels much lighter than with the SLAs and faster too (even with the gear reduction) so I have to say it's an unqualified success. I just hope I can get good life out of these batteries.

After Run #4, I was in a rush and so I put the charger on and went to a talk and then came back. About 3 hours had passed and the charger had over charged the batteries. It actually wedged the battery holder apart. So I'm worried now that my batteries will be weakened -- even though most of the bulging has subsided.

I reinforced the battery holder this morning and we'll see how it holds up.

LED Voltmeter

| | Comments (0) | TrackBacks (0)
Found a great article that describes how to make a LED voltmeter using a chip designed specifically for that, the LM3914. http://www.evconvert.com/article/led-bargraph-battery-monitor

I'm working on a bicycle assist motor project. I thought about using a hub motor or chain drive but given the economy, I'm going with a friction drive. Friction drive is cheap, has few little moving parts to go wrong, and is cheap. I think I can make it using parts almost entirely found around the shop -- with the exception of the friction roller.

Now what I like about friction drive is if you use a roller with a one-way bearing and take advantage of some physics, the motor can release from the wheel entirely when freewheeling, so the bicycle remains entirely pedal-able on its own.

I decided to go with rollers from the defunct EV Warrior project. They're available on the surplus market, have one way bearings, and are nicely knurled. Other people are making their own friction rollers from BMX wheel hub extensions, but they don't have one-way bearings.

Here are some dimensions almost entirely for my own benefit.

PartInchmm
Shaft OD0.500"12.70mm
Shaft ID0.315"
(a tad over 5/16")
8.00
Shaft Width3.016"76.61
Roller Width2.375"
2 3/8"
60.35
Roller OD1.275"
~1 1/4"
32.38
Key Notch Width0.130"3.32
Key Notch Depth0.411"10.4

About this Archive

This page is a archive of entries in the Batteries / Power Systems category from January 2010.

Batteries / Power Systems: December 2009 is the previous archive.

Batteries / Power Systems: February 2010 is the next archive.

Find recent content on the main index or look in the archives to find all content.